Blind source separation by independent component analysis applied to electroencephalographic signals

نویسندگان

  • Carlos Lima
  • Carlos A. Silva
  • Adriano Tavares
  • Jorge Oliveira
چکیده

Independent Component Analysis (ICA) is a statistical based method, which goal is to find a linear transformation to apply to an observed multidimensional random vector such that its components become as statistically independent from each other as possible. Usually the Electroencephalographic (EEG) signal is hard to interpret and analyse since it is corrupted by some artifacts which originates the rejection of contaminated segments and perhaps in an unacceptable loss of data. The ICA filters trained on data collected during EEG sessions can identify statistically independent source channels which could then be further processed by using event-related potential (ERP), event-related spectral perturbation (ERSP) or other signal processing techniques. This paper describes, as a preliminary work, the application of ICA to EEG recordings of the human brain activity, showing its applicability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removing Electroencephalographic Artifacts : Comparison between Ica and Pca

Pervasive electroencephalographic (EEG) artifacts associated with blinks, eye-movements, muscle noise, cardiac signals , and line noise poses a major challenge for EEG interpretation and analysis. Here, we propose a generally applicable method for removing a wide variety of artifacts from EEG records based on an extended version of an Independent Component Analysis (ICA) algorithm 2, 12] for pe...

متن کامل

A Modified Method for Blind Source Separation

Blind source separation is an important but highly challenging technology in astronomy, physics, chemistry, life science, medical science, earth science, and applied sciences. Independent Component Analysis (ICA) employed technologies in applied computer science for blind source separation. In the separation of blind sources under multiple sensors, it can estimate approximately the types of sig...

متن کامل

SOBI-RO for Automatic Removal of Electroocular Artifacts from EEG Data-Based Motor Imagery

Signals from eye movements and blinks can be orders of magnitude larger than braingenerated electrical potentials and are one of the main sources of artifacts in electroencephalographic (EEG) data. This article presents a method based on blind source separation (BSS) for automatic removal of electroocular artifacts from EEG datain amotor imagery experiment. BBS is a signalprocessing methodology...

متن کامل

Calculation of Leakage in Water Supply Network Based on Blind Source Separation Theory

The economic and environmental losses due to serious leakage in the urban water supply network have increased the effort to control the water leakage. However, current methods for leakage estimation are inaccurate leading to the development of ineffective leakage controls. Therefore, this study proposes a method based on the blind source separation theory (BSS) to calculate the leakage of water...

متن کامل

Nonlinear Independent Component Analysis by Self-Organizing Maps

Linear Independent Component Analysis considers the problem of nd-ing a linear transformation that makes the components of the output vector statistically independent. This can be applied to blind source separation, where the input data consist of unknown linear mixtures of unknown independent source signals. The original source signals can be recovered from their mixtures using the assumption ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003